![]() リンクステートプロトコルによるipフォワードにより制御されたイーサーネット・ネットワーク
专利摘要:
イーサーネット・ネットワークのノードは、制御プレーン上のリンクステートプロトコルで作動する。そして、そのFIBに最短のパスをインストールすることによって、ネットワーク上の各ホップにおいてMACヘッダのリプレースを必要とせずに、パケットを最短パスで伝達することを可能とする。ノードがIPアドレスを知ったときに、それは、IPアドレスをLSAに挿入し、ネットワークにおいてそのIPアドレスの到達可能性をアドバタイズする。各々のノードは、このIPアドレスをそのリンクステートデータベースに付け加える。パケットが入り口ノードに到着する場合、入り口ノードはIPアドレスを読み込んで、リンク上のどのノードが、前記リンクステートプロトコル制御されたイーサーネット・ネットワークで、IPアドレスをアドバタイズしたかを特定する。かつノードにパケットをフォワードするために、MACヘッダを作成する。MACヘッダのDA/VIDは、IPアドレスをアドバタイズしたノードの節点のMACである。ユニキャスト、及びマルチキャストIPフォワードがインプリメントされる。 公开号:JP2011509576A 申请号:JP2010540940 申请日:2008-12-30 公开日:2011-03-24 发明作者:アラン,デイヴィッド;アンベハーゲン,ポール;ブラッグ,ニジェル 申请人:ノーテル・ネットワークス・リミテッド; IPC主号:H04L12-56
专利说明:
[0001] 本発明はリンクステートプロトコル制御のイーサーネット・ネットワークに関する。より詳細には、リンクステートプロトコル制御されたイーサーネット・ネットワークのIPフォワードに関する。] 背景技術 [0002] この出願は、「リンクステートプロトコルでのIPフォワードにより制御されたイーサーネット・ネットワーク」と題する2007年12月31日に出願された米国特許出願12/006,285号から変更された、米国仮出願の優先権を主張する。この出願の内容は、ここに引用することにより、本明細書に組み込まれる。本出願人は、この米国特許出願を仮出願に変更する申請を2008年3月28日に行っている。したがって、この出願から派生した仮出願についても優先権を主張する。] 発明が解決しようとする課題 [0003] コミュニケーション・ネットワークは、相互に接続され、データをフォワードするさまざまなコンピュータ、サーバ、ノード、ルータ、スイッチ、ブリッジ、ハブ、プロクシその他のネットワーク装置を含んでいる。これらのデバイスは、本明細書において、「ネットワークエレメント」と称される。データは、データ通信ネットワークでプロトコルデータユニットを送ることにより、ネットワークエレメント間で、通信される。プロトコルデータユニットには、例えば、インターネット・プロトコル・パケット、イーサネットフレーム、データセル、セグメント、またはその他の、データのビット/バイトの論理的関連があり、ネットワークエレメントの間で一つ以上の通信リンクを利用することによって通信される。特定のプロトコルデータユニットは、複数のネットワークエレメントおよび、クロスマルチプル通信リンクによって扱われ、そして、これは、ネットワークにおいて、ソースからデスティネーション点に伝送される。] [0004] コミュニケーション・ネットワークのさまざまなネットワークエレメントは、予め定められた規則(本明細書において、プロトコルと称される)を使用して、各々と通信する。異なるプロトコルは、通信の異なる態様を規定するために使用される。例えば、信号がネットワークエレメント間の伝送のために、どのように形成されなければならないか、あるいは、様々な態様のプロトコルデータユニットがどのような形式となるか、ネットワークエレメントによってネットワークを介してどのように取り扱われルーティングされるか、ルーティング情報等の情報がどのようにネットワークエレメント間で交換されるべきか等を規定する。] [0005] イーサネットはイーサネット・ネットワークアーキテクチャの標準802.1として電気電子学会(IEEE)によって定義された周知のネットワークプロトコルである。ネットワークに接続されるデバイスは、所与のいかなる時間においても共用の通信パスを使用する能力を争う。複数ブリッジまたはノードがネットワーク部分を相互接続するために使用される場合、同じデスティネーションに対する複数の可能なパスがしばしば存在する。このアーキテクチュアの利点は、これによって、ブリッジ間のパスの冗長性を提供し、かつ、付加的なリンクの形によって、ネットワークに付加的な容量が与えられるということである。しかしながらループが形成されるのを防止し、ブロードキャストされ、あるいは、あふれないようにするためにスパニング・ツリーが通常用いられる。スパニング・ツリーの特徴は、デスティネーションのペア間のいかなるものも、ネットワークに1つのパスだけが存在するということである、したがって、パケットがどこから来たか見ることによって、所与のスパニング・ツリーに関連する接続性を知ることが可能である。しかしながら、スパニング・ツリー自体は、拘束的であり、スパニング・ツリーの部分にあるリンクは、多用され、スパニング・ツリーの部分にないリンクは利用されない。] [0006] スパニング・ツリーをインプリメントするイーサーネット・ネットワークにおいて内在するいくつかの限界を克服するために、リンクステートプロトコルにより制御されたイーサーネット・ネットワークが、2006年10月2日に出願された出願番号11/537,775の「プロバイダリンクステートブリッジング」と題する出願に開示されている。この出願の内容は、引用することによって本願明細書に組み込まれる。その出願に詳細に記載されているように、トランスペアレントブリッジと組み合わせたスパニング・ツリー・プロトコル(STP)アルゴリズムを使用して、各ノードにおいて知っているネットワークビューを利用するのに代えて、リンクステートプロトコルにより制御されたイーサーネット・ネットワークにおいて、各ノードが同期化されたネットワークトポロジのビューを得るために、ブリッジが、メッシュ・ネットワーク・エクスチェンジ・リンク・ステート・アドバタイズメントを形成する。このことは、リンク・ステートによるルーティングシステムのよく理解されたメカニズムによって達成される。ネットワーク中のブリッジは、ネットワークトポロジの同期化されたビューを持ち、必要なユニキャスト、及びマルチキャスト接続性についての知識を持ち、ネットワーク中のいかなるブリッジのペアの間の接続の最短のパスをも計算でき、かつ、計算されたネットワークのビューによって、そのフォワード情報ベース(FIB)をそれぞれ格納する。] [0007] 全てのノードが、同期化されたビューにおいて自身の役割を計算し、自身のFIBを格納した場合、ネットワークは、ループフリー(loop−free)のピアブリッジ(peer bridges)(いかなる理由であってもそのブリッジに通信を必要とするもの)のセットからのいかなるブリッジに対してもユニキャストツリーを持つことになる。そのブリッジがホストしているサービスインスタンス毎に所与のいずれのブリッジからピアブリッジの同じセットあるいはサブセットの、調和し(congruent)かつループフリーであるポイント・ツー・マルチポイント(p2mp)マルチキャストツリーをも持つことになる。その結果、所与のブリッジのペアの間のパスは、スパニング・ツリーのルート・ブリッジを通過することを強いることがなく、かつ、全体的な結果は、メッシュの接続性の広がりをより良く利用することとなる。本質的には、あらゆるブリッジは、一つ以上のツリーに接続(root)する。これらのツリーは、ブリッジに対するユニキャスト接続性、及び、ブリッジからのマルチキャスト接続性を定める。] [0008] カスタマーのトラフィックがネットワークに入るときに、カスタマーのMACアドレス(C−MAC DA)がプロバイダのMACアドレス(B−MAC DA)に解決される(resolved)、そして、プロバイダMACアドレス空間を使用して、プロバイダはトラフィックをプロバイダネットワーク上でフォワードする。加えて、プロバイダネットワークのネットワークエレメントは、仮想LAN ID(VID:Virtual LAN ID)に基づいて、トラフィックをフォワードするよう構成されている。そうすることによって、同じデスティネーションにアドレッシングされた異なるフレームであって異なるVIDを有するものは、ネットワークを介して異なるパスを通じてフォワードされる。作動中に、リンクステートプロトコル制御されたイーサーネット・ネットワークは、一つのVIDレンジ(VID range)を最短のパス・フォワーディングに関連付ける。そうすることによって、そのレンジのVIDを用いて、ユニキャスト及びマルチキャストトラフィックが、フォワードされる。そして、トラフィック・エンジニアリング・パスは、最短のパス以外のパス上のネットワークにおいて形成され得る。そして、第2のVIDレンジを用いてフォワーディングされる。] 課題を解決するための手段 [0009] 図1は、リンクステートプロトコル制御されたイーサーネット・ネットワーク10の一部の実施例の機能ブロック図である。図1に示すように、この実施例におけるネットワーク10は、リンク14によって相互接続された、複数のネットワークエレメント12を有する。このネットワークエレメントは、ハローメッセージを交換し、他のネットワークエレメントの近接関係を知る。そして、リンク・ステート・アドバタイズメントを交換し、各ノードがリンクステートデータベースを構築できるようにする。このリンクステートデータベースは、このネットワークにおいて、入り口(ingress)及び出口(egress)間の最短のパスを計算するのに使用されてもよい。] 図1 [0010] リンク・ステートルーティングプロトコルの例は、オープンショーテストパスファースト(OSPF:Open Shortest Path First)、及びアイエスアイエス(IS−IS:Intermediate System to Intermediate System)を含む。アイエスアイエスは、例えば、ISO 10589、及びIETF RFC 1195に記載されている。これらの内容は、ここで引用することにより、本明細書に組み込まれる。] [0011] 最短パス・ユニキャスト・フォワーディング・ステートをインストールすることに加えて、ノードは、また、マルチキャストツリーのためのフォワーディング・ステートをネットワークにインストールしてもよい。リンクステートプロトコル制御されたイーサーネット・ネットワークにマルチキャストをインストールする方法の例は、2007年2月5日出願の米国特許出願番号11/702,263号「リンクステートプロトコル制御されたイーサーネット・ネットワークへのマルチキャストのインストール」に詳細に記載されており、ここに引用することによって、その内容は本願明細書に完全に組み込まれる。そのアプリケーションに記載されているように、リンク・ステート・アドバタイズメントは、マルチキャスト・グループメンバーシップをアドバタイズするために使用されてもよい。それによって、マルチキャスト・グループのステートのフォワーディングがネットワークにインストールされる。特に、所与のマルチキャスト・グループの各々のソースは、デスティネーションMACアドレス(DA)が割り当てられてもよい。DAは、ネットワークにおいてフレームのフォワードに使用される。もし、ネットワークのノードが、マルチキャスト・ソースから、リンクステートプロトコルを介してマルチキャスト・グループにおいて「関心(interest)」をアドバタイズしているデスティネーション・ノードの一つへの最短パス上にあると、ノード自身が判断する場合、ノードは、ソース/グループ・ツリーのためのフォワーディング・ステートをインストールする。] [0012] マルチキャストにおける関心(interest)は、関心識別子(interest identifier)のコミュニティ、例えば、I−SIDに基づいてもよい。そうすることによって、ネットワークのノードはマルチキャスト・グループのためのフォワーディング・ステートをインストールする。このインストールは、マルチキャスト・グループが、ソース及びデスティネーションの間で最短パスにあるときであって、ソース及びデスティネーションの両者が、マルチキャスト・グループに関連する関心識別子のコミュニティにおいてアドバタイズされた関心を持っているときになされる。I−SIDは、通常802.1ahに関連しており、かつ、付加的なMACヘッダ(カスタマー・ソース及びデスティネーションのMACアドレス)を意味する。しかしながら、C−MACヘッダが使用されない場合であっても、I−SIDは有用性を有する。なぜなら、I−SID値が、相互の接続性の特定の事例(instance)の参加者を特定することができるからである。フォワーディング・ステートは、しかしながら、マルチキャストDA、及びマルチキャストに関連するVIDに基づいている。] [0013] 動作において、ネットワークの複数ノードは、特定のI−SIDに対する関心をアドバタイズしてもよい。ネットワーク上のノードは、どのノードがどのI−SIDに対する関心をアドバタイズしたかを監視し、もし、特定のI−SIDへの関心をアドバタイズした2つのノードの間の最短のパス上に、それらが存在する場合、I−SIDに関連するDA/VIDペアのステートのフォワードをインストールする。このことは、ネットワークにおいてフレームをあふれさせることなく、フォワーディング・ステートを関心のコミュニティのためにインストールすることを可能とする。] [0014] リンクステートプロトコル制御されたイーサーネット・ネットワークは、リンクレイヤ(レイヤ2)で作動する。すなわち、入り口(ingress)ノードは、イーサーネット・ネットワーク全体にフレームを(例えばノードAからノードEに)スイッチするために使用され得るMACヘッダを生成する。他のネットワーク(例えばインターネット・プロトコル(IP)ネットワーク)は、レイヤ3(ネットワークレイヤ)のような上位レイヤで作動する。IPネットワークは、IPパケットに関連するIPヘッダのIPアドレスに基づいて、パケットをフォワードする。] [0015] 図2、及び図3は、従来のIPネットワークにおいて、IPパケットをフォワードするために使用され得るIPルーティングの2つの一般的な方法を示す。図2において示される実施例において、ネットワーク20は、ネットワークX、及びネットワークYを相互接続する。ネットワーク20は、多くのルータ22を含んでおり、及び図1において示されるネットワークに類似した構成を有してもよい。図2、及び図3においてネットワーク20によるパスは、ノードのA、B、C、D、Eを経由すると仮定する。ネットワーク20のオペレーションの説明を単純化するために、ネットワークX、及びY間の選択されたパスにないルータは、図2、及び図3に示していない。] 図1 図2 図3 [0016] 通常、パケットがルータ22に到着すると、ルータはパケットのIPアドレスに基づいてIPルックアップを実行し、かつIPネットワークのパケットのための次のホップを決定する。ルータはそれから次のホップIPアドレスをレイヤ2MACアドレスに解決して、かつ、そのパケットのレイヤ2MACヘッダを作成する。そして、リンク24A上でパスに沿ってデスティネーションに向けて、次のホップ・ルータにパケット伝送する。この例では、ルータ22Aは、デスティネーションMACアドレス(DA)=I及びソースMACアドレス(SA)=Hと共にMACヘッダを付加する。ルータ22Aはリンク上でルータ22Bにパケットをフォワードする。] [0017] ルータ22Bがパケットを受信すると、それはMACヘッダを取り除き、かつIPヘッダ上のルックアップを実行する。それから、この例ではDA=K、及びSA=Jを含む新しいMACヘッダを有するパケットをカプセル化する。これは、リンク24B上で、そのデスティネーションにパケットをフォワードする。パケットがデスティネーションネットワークYに到着するまで、この取り除き及び付加のプロセスが、パスに沿って各々のルータで実行される。したがって、従来のIPフォワードにおいては、パスに沿って、各々のルータは、802.3の外側のヘッダを取り除き、パケットを送るために、IPルックアップを実行する。そして、新しい802.3のヘッダを付け加え、パケットをデスティネーションネットワーク全体にフォワードする。この方法は、ホップを繰り返す毎に、各々のルータは、MACヘッダを取り除き、かつ、ネットワークにパケットを送るためにIPルックアップを実行することになる。] [0018] 図3は、IPルーティングがインプリメントされ得る他の方法を示す。図3において示される実施例において、MPLSが、ネットワークのさまざまなルータで実行される数のIPルックアップを減らすために使用される。MPLSネットワークにおいて、複数のラベルスイッチパス(LSP:Label Switched pass)は、MPLSネットワークによって確立される。LSPが決定されるかつネットワークによって生成される特定の方法は周知である。図3において示される実施例において、ラベルスイッチパスは、ノードのA、B、C、D、Eを含むと仮定する。パケットがエッジ・ルータ32Aに到着すると、エッジ・ルータ32Aは、どのラベルがネットワークYに到着するためにMPLSネットワークを介してLSPへIPパケットをスイッチするために使用されなければならないかについて決定するために、IPルックアップを実行する。エッジ・ルータ32Aは、そのラベルをパケットに適用する。エッジ・ルータ32Aは、また、パス上のパケットのための次のホップを特定し、及びパス(ルータ32B)上の次のホップにパケットを届けるために、MACヘッダをパケットに適用する。] 図3 [0019] ルータ22Bは、外側のMACヘッダを取り除いて、かつMPLラベルを読む。LSPがネットワークによって確立されると、ラベル配布プロトコルは、特定のIPフォワーディング・エクイバレンス・クラス(IP Forwarding Equivalence Class)のためのラベル100とラベル210との間の関連を確立しているはずである。したがって、ルータ32BがMPLSラベル100を有するパケットを受信するときに、それは、新しいMACヘッダを付加し外部インターフェースにフォワードする前に、ラベルを新しいMPLSラベル210に置き換える。図2のオペレーションと同様に、パケットをフォワードする前に、ルータ32Bは、新しいMACヘッダをパケットに付け加える。このパケットは、この場合、SA=J、DA=Kであり、これは、ルータ32CにおいてソースMACアドレスがMAC Jであり、デスティネーションMACアドレスがMAC Kであることを特定するものである。] 図2 [0020] したがってMPLSは、単一のIPルート・ルックアップをMPLネットワークの端において実行することを可能とし、そして、MPLSネットワーク全体にパケットをフォワードするためにIPルックアップの代わりに、ラベルスイッチを使用することを可能とする。パケットをLSPに乗せるために、最初のIPルックアップを実行し、かつパケットにラベルをアサインするエッジ・ルータは、ラベルエッジルータと称する。ラベルスイッチを実行する、MPLSネットワークの中間のルータは、通常、ラベルスイッチングルータ(LSR)と称する。MPLSネットワークでのフォワードは、各々のホップでMACヘッダを取り除いた後にラベルを交換(swap)することによって実行される。MPLSフォワードは、依然として、MACヘッダの取り除きがネットワーク(イーサネット・リンクが使用されるときに)全体のあらゆるホップでなされることを必要とし、各々のLSRがラベル・ルックアップ、及びラベル・スワップを実行することを必要とし、かつ、各々のLSRが、LSPに沿ってパケットを次のLSRに配信するために他のMACヘッダを付け加えることを必要とする。したがって、この方法は、各々のノード上の処理、及びインテリジェンスを必要とするため、より高価な解決案に結果となってしまう。加えて、これを機能させるためには、パスは、初期にセットアップされなければならず、これは、計算機上も高価となってしまう。] [0021] IPネットワーク、及び一般のネットワークレイヤプロトコルは、下位レイヤ・ネットワーク(例えばイーサネットネットワーク)によってサポートされている。それ故、ルータがネットワークレイヤパケットを送信するときに、ネットワークのパケットを送信する前に、これは、イーサネットMACヘッダのような下位レイヤ・プロトコル・ヘッダをパケットに適用する。MACヘッダは、ネットワークレイヤにサポートを提供しているレイヤ2ネットワークの上のパケットをフォワードするために、リンクレイヤで使用される。したがって、リンクステートプロトコル制御されたイーサーネット・ネットワークによって、ネットワークのサポートを一体化することは有利である。] [0022] 本発明の態様は、添付の請求の範囲で定義される。本発明は、例示として図面に示されており、同様の参照番号は同様の要素を示している。以下の図面は、本発明の各種実施形態について、説明する目的でのみ開示しており、かつ本発明の範囲を制限することを目的としない。明確にするため、すべての構成要素は、すべての図において参照番号を付けていない場合がある。] 図面の簡単な説明 [0023] リンクステートプロトコル制御されたイーサーネット・ネットワークをインプリメントするために使用され得るメッシュネットワークの機能ブロック図である。 IPネットワークのIPルーティングをインプリメントする1つの方法を示している機能ブロック図である。 IPネットワークのIPルーティングをインプリメントする1つの方法を示している機能ブロック図である。 本発明の実施例に従って、リンクステートプロトコル制御されたイーサーネット・ネットワークにおいてIPパケットのフローを示す機能ブロック図である。 リンクステートプロトコル制御されたイーサーネット・ネットワークの入り口ノードによって、実施例に従ってIP情報を処理する方法のフローチャートである。 リンクステートプロトコル制御されたイーサーネット・ネットワークの中間ノード又はエッジノードによって、実施例に従ってIP情報を処理する方法のフローチャートである。 リンクステートプロトコル制御されたイーサーネット・ネットワークの入り口ノードによって、IPパケットを受信したときの方法のフローチャートである。 リンクステートプロトコル制御されたイーサーネット・ネットワークの出口ノードによって、IPパケットを受信したときの方法のフローチャートである。 本発明の実施例に従って、リンクステートプロトコル制御されたイーサーネット・ネットワークの可能なインプリメンテーションを示す図である。 可能な要素の組合せを示す図である。 本発明の一実施例に従って、L2/L3ハイブリッドネットワークのコンポーネントの機能分解を示す図である。] [0024] リンクステートプロトコル制御されたイーサーネット・ネットワークのノードは、リンク・ステートルーティングプロトコル、例えばアイエスアイエス(IS−IS)をインプリメントする。ネットワークのノードは、近接関係をアイエスアイエス(IS−IS)リンク・ステート・アドバタイズメント(LSAs)(別名リンクステートパケット)によって認識し、かつネットワークのノードの全てのペア間の最短パスを計算する。各々の参加しているノードは、ネットワークのノードの各ペアの間でユニキャストフォワーディング・ステートを構築するために、そのフォワード情報ベース(FIB:Forwarding Information Base)を格納する。フォワード量設計(traffic engineered path)されたパスが構築されてもよい。そして、TEパスのためのフォワーディング・ステートがネットワークのノードのFIBにインストールされる。] [0025] アイエスアイエス(IS−IS)によって、トポロジ情報、及びレイヤ2及びレイヤ3の特定のネットワークロケーションに対するアドレスのバインディング、及びインターフェースを、スイッチング又は特定のネットワーク要素のフォワード技術とは独立して、交換することを可能とする。このことは以下の二点を可能とする。第1は、共通のアイエスアイエス(IS−IS)ドメイン内のネットワークの構造は、例えばイーサネット、及びMPLS、IPv4またはIPv6のスイッチング技術と連続であってもよいということである。ルーティングシステムは、複数フォワード方法を通過するネットワーク全体の最短パスを決定してもよい。その結果は、ドメインをルーティングするシステムである(ルーティングプロトコルの実例に参加しているネットワークノードのセット)。これは、一つ以上のイーサネットスイッチングドメインを含んでもよい。1つの退歩したケースとしては、ルーティングドメイン、及びスイッチングドメインの完全な結合(congruence)である。もう一つのケースとしては、現行のシステムにおいて、ルーティングドメインにおいて全てのノードがレイヤ3でフォワードを実行し、イーサネットはリンク技術として使用されるだけとするものである。] [0026] リンクステートプロトコル制御されたイーサーネット・ネットワークは、LAN接続を仮想化し、かつ仮想LANインスタンスを802.1ah I−SIDsと関連づける。大部分のネットワークレイヤルーティングシステム、及びプロトコル群は、すでにLANセグメントをトポロジ要素と認識する。したがって、メタファーを維持することは、仮想LANセグメントをネットワークレイヤに一体化する際に、大部分の必要な挙動が十分に理解できることになり、有利である。LANセグメントは、サブネットワークまたはサブネットとしてネットワークレイヤに現れる。したがって、LANセグメントによって接続されるノードに関連づけられたネットワーク・レイヤー・アドレスのセットが、IPの技術分野において周知のプレフィックスとして、単一のアドバタイズメントに集約され得る。] [0027] スイッチングドメインは、一つ以上の仮想LANセグメントをインプリメントしてもよい。したがって、ネットワークレイヤでネットワークを構築するために、仮想LANセグメントを相互接続するメカニズムが必要とされる。スイッチングドメインにあるノードは、ネットワークレイヤフォワーディングをインプリメントし、受信されたパケットのネットワークレイヤ情報を使用して、仮想LANセグメント間でパケットをフォワードするよう構成されてもよい。フォワードエレメントは、以下、仮想フォワーディングエレメント(VFE:Virtual Forwarding Elements)と呼ぶ。] [0028] スイッチングドメインは、ネットワークレイヤフォワードだけを実行するデバイスによって相互接続してもよい。一般的な具体例は、ルータである。スイッチングドメイン、及びルーティングドメインが統合(congruent)していない場合に、スイッチングドメインからの正しい出口が解決できるよう、スイッチングドメインの範囲についての付加的な知識を伝達するためにアイエスアイエス(IS−IS)を強化することが必要である。これは、ノードがL2トランジットを提供するかどうか、及びリンクがイーサネットであるか否かに関する知識である。これらは、ネットワークレイヤルーティングの技術において存在するコンセプトの直接の拡張である(例えば、サポートされるサービスをネットワークレイヤポートID(PID)が指定すること、また、ノードがトランジットをオファーしているか否かをオーバーロードビットで示すこと)。] [0029] IPの技術における方法と同様に、アンナンバード(unnumbered)リンクを使用することは、アドレスの消費を減少させる。仮想LANセグメントのコンセプトを考慮することは、有利である。仮想LANセグメントは、複数のVFEを相互接続するために明確に存在し、かつ、したがって、エンドシステム・アドレス指定を必要としない。この種のLANセグメントは本明細書において、「トランジットI−SID」と言う。アドレスされた(addressed version)仮想LANセグメントは、の本明細書において、UNI I−SIDと言う。複数のトランジットI−SIDの連続を使用して、ネットワークの構築を考慮することも可能である。しかしながら、さらに複雑度を増すことは、有用性を提供しないため、以下の開示においては、トランジットI−SIDをセットのVFE間の相互接続についてのみ検討する。] [0030] トランジットI−SIDの付加的な長所としては、L2/L3統合のための状態の全体の量は、ネットワークのVFEのセットで分けられてもよいということである。VFEに関連する状態の量は、VFEを介して直結されているUNI I−SIDのセットと関連づけられたL2、及びL3状態の合計である。これは、典型的には、エンドシステムネットワークレイヤアドレッシング、及びイーサネットMACバインディングへのネットワークレイヤの形をとる。トランジットI−SIDの使用によってVFE間の状態を分けることは、VFEが、UNI I−SIDのネットワークレイヤ情報、及び共通のトランジットI−SIDとの関連するポートについての知識を持つだけでよいことになる。] [0031] 同様に、L2/L3ハイブリッドネットワークへのアクセスは、仮想LANセグメントを介してすることを必要としない。物理LANセグメントまたは物理なポイント・ツー・ポイント接続は、ハイブリッドネットワークへ有効な接続(attachment)である。物理LANセグメントはNULL I−SIDでUNIと同じように特定される。ポイント・ツー・ポイント接続のケースは、UNIポートと呼ばれる。] [0032] ルーティングドメインのノードは、ルーティングドメインの外側のネットワーク・レイヤー・アドレスまたはプレフィクスがそれ自体を介して接続できると判断する場合、それは、そのリンク・ステート・アドバタイズメントにネットワークレイヤ情報を含ませる。このことは、この知識、または発見メカニズムを持つ構成となっているからである。ネットワークレイヤ情報は、UNI I−SID、(エンドシステムをスイッチされたドメインに直接接続するための)UNIポート、またはルータのようなネットワーク・レイヤーフォーワーダー(ネットワークレイヤフォワード装置)の一つと関連する(なお、本願明細書においてルータは、スイッチされたドメインに直結していないエンドシステムに接続するために使用されるエンティティを記述するために用いる)。] [0033] ルーティングドメインに含まれるスイッチングドメインの各々のノードは、このネットワークレイヤプレフィクスをそのリンクステートデータベースに付け加える。スイッチングドメインの中でVFEをインプリメントするノードは、正しくそれらのFIBを格納するためにこの情報を使用する。これによって、パケットがVFEに到着したとき、VFEはネットワーク・レイヤー・アドレスを読み、かつルーティングドメインのネットワークレイヤのデスティネーションにパケットを最短パスでフォワードすることを続ける適切なフォワードアクションを決定する。] [0034] マルチキャストの場合において、複数のノードが、同じネットワークレイヤマルチキャスト・グループアドレスにおいて関心(interest)をアドバタイズした2つのノード間の最短パスに存在する場合、スイッチされたドメインのノードは、ネットワークレイヤマルチキャスト・グループのフォワーディング・ステートをインストールするように構成されてもよい。リンクステートプロトコル制御されたイーサーネット・ネットワークのノードが、リンク・ステート・アドバタイズメントのIPマルチキャストにおいて、関心をアドバタイズすることを可能とするために、ネットワークレイヤマルチキャスト情報要素、例えばタイプレングスバリュー(TLV:Type Length Value)タプルが、アイエスアイエス(IS−IS)に付け加えられてもよい。同様に、ネットワークレイヤマルチキャストからI−SID値に、アルゴリズム的にまたは管理された形で翻訳することも採用され得る。これによって、従来のリンクステートブリッジングであるアッド/ムーブ/チェンジ(add/move/change)手順も、所与のスイッチされたドメイン全体にマルチキャスト・ルーティングを扱う。ノードがIPマルチキャストアドレスを含むリンク・ステート・アドバタイズメントを発行する場合、ノードはマルチキャスト・グループメンバーシップを示すためにそれらのリンクステートデータベースを更新する。ノードはまた、それらがIPマルチキャスト・ソースと、IPマルチキャストで関心をアドバタイズしているノード(デスティネーションまたはグループノード)との間のパス上の中間のノードであるかを判断する。その場合には、リンクステートプロトコル制御されたイーサーネット・ネットワークがIPマルチキャストにトランスポートサービスを提供し得るように、その中間ノードは、IPマルチキャスト・グループに関連づけられたマルチキャストDAのためのフォワーディング・ステートをインストールする。] [0035] IPマルチキャストパケットが、リンクステートプロトコル制御されたイーサーネット・ネットワークの入り口で受信された場合、その入り口ノードは、IPルックアップを実行し、マルチキャストDAがリンクステートプロトコル制御されたイーサーネット・ネットワーク上で使われるかを決定し、IPパケットを伝送するために利用されるフレームのためのMACヘッダを構築する。フレームは、それから、IPマルチキャストに対する関心をアドバタイズしたノードに、(そのマルチキャストDAのためにインストールされたFIBステートを使用して)中間ノードによってフォワードされるマルチキャスト・ヘッダとともに出力される。] [0036] フォワーディングネットワークレイヤルーティングをリンクステートプロトコル制御されたイーサーネット・ネットワークと結ぶことによって、リンクステートプロトコル制御されたイーサーネット・ネットワークを通じてIPサービスがエンドツーエンドで転送されうる。この場合、IPルートのために必要なユニキャスト又はマルチキャストのスイッチされたパスを設定するために追加的な信号を必要としない。このことは、リンクステートプロトコル制御されたイーサーネット・ネットワークが、ネットワークレイヤルートのために形成されるショートカットを用いることを可能とする。このため、L3フォワーディングは、リンクステートプロトコル制御されたイーサーネット・ネットワークにおいてL2スイッチングにマップされてもよい。] [0037] スイッチされたドメインにおいて、及びスイッチされたドメインの外側の共通インターフェース上において、複数のネットワークレイヤプロトコルをサポートすることが可能である。複数のネットワークレイヤプロトコル(例えばIPv4、及びIPv6)に関する情報は、リンク・ステートルーティングプロトコルによって伝送され、かつ、VFEは、複数のネットワークレイヤをFIBに組み込んでもよい。これによって、ルーティングドメインでサポートされるネットワークレイヤで受信されるいかなるパケットも、正しく解決される。] [0038] ネットワーク上のスイッチされたドメインの入り口ノードを、ネットワーク・レイヤー・アドレスにマッピングし、リンクステートプロトコル制御されたイーサーネット・ネットワークをパススルーすることによって、リンクステートプロトコル制御されたイーサーネット・ネットワークは、ネットワークレイヤルーティング及びフォワーディングをインプリメントするために用いられ得る。図4は、IPフォワーディングがどのようにインプリメントされるかの実施例を示している。ここで、リンクステートプロトコル制御されたイーサーネット・ネットワークのノードはIPアドレスを、リンクステートプロトコル制御されたイーサーネット・ネットワークにおけるエンドポイントイーサネットMACアドレスにマップするよう構成されている。アイエスアイエス(IS−IS)を使用して、ネットワーク・レイヤー・アドレスをアドバタイズすることに関連する追加的な情報を以下に示す。] 図4 [0039] ネットワーク・レイヤー・アドレスをアドバタイズすることによって、入り口ノード12Aは、ネットワークレイヤパケットが受信された場合に、ネットワーク上の、他の何れのリンクステートプロトコル制御されたイーサーネット・ネットワークのノードが、ネットワーク・レイヤー・アドレスに到達できるか、を判断することを可能とする。リンクステートプロトコル制御されたイーサーネット・ネットワークのノードは、その後、MACヘッダを生成する。このMACヘッダは、ネットワーク上でネットワークレイヤパケットをフォワードするために用いられる。この場合、MACアドレスは、出口ノード(図4において示される実施例のルータE)の節点(nodal)MACである。中間ノードは、最短のパスフォワーディング・ステートを持ち、これによって中間ノードは接点MAC Eに向けてパケットをフォワードし、そのノードに対する最短のパスに沿ってこれを行えばよいため、中間のノードB、C及びDは、フォワーディング情報ベース(FIB)中でMACルックアップを単純に実行し、かつそのパケットをネットワークの適切なデスティネーションにフォワードする。中間ノードは、MACヘッダを取り除き、かつパスに沿って各々のホップで新しいMACヘッダを作成することを必要としない。したがって、リンクステートプロトコル制御されたイーサーネット・ネットワークのパスは、リンクステートプロトコル制御されたイーサーネット・ネットワークを介したネットワークレイヤフォワーディングをインプリメントするために使用される。] 図4 [0040] ルーティングドメインのノードがネットワーク・レイヤー・アドレスまたはプレフィクスを認識した場合、それは、アイエスアイエス(IS−IS)リンク・ステート・アドバタイズメントにおけるアドレスをアドバタイズする。スイッチされたドメインのノードは、リンク・ステート・アドバタイズメントを使用して共通に送信される他のルーティング情報を含むリンクステートデータベース内の属性として、そのアドレスを記憶する。例えば、LSAを使用して、近接のノード、I−SID、及び他の情報が送信されてもよい。全てのノードは、ネットワークアドレス又はプレフィクスがどこでネットワークに付加されるかについて認識しているため、ノードは正しい出口MACアドレスを、特定ノードに到達するために選択してもよい。加えて、ノードは、同じネットワークアドレスに対する関心をアドバタイズしているノード間のネットワークの接続性をセットアップするためにフォワーディング・ステートをインストールすることが可能である。] [0041] ネットワークレイヤプレフィクスは、仮想又は物理LANセグメントに関連づけられ得る。これらは、ルーティングシステムのI−SIDとして特定される。したがって、プレフィクスとI−SIDとの明確な関連がルーティング・データベースの中に存在する。スイッチされたドメインの中で、どの物理又は仮想入り口ポートが、I−SIDに関連づけられているかについての制約は存在しない。したがって、ネットワーク設計は単にVFEがどのI−SIDと相互接続するかについて検討すればよい。B−MACスイッチングは、ユニキャストIPトラフィックをスイッチされたドメインにおいて転送するときに使用される。ここで、単一のIPルックアップおよびL3/L2解決ステップが、スイッチングドメインの端において用いられる。そして、MACヘッダが生成される。これは、ネットワークにおいてスイッチされたドメインから出口ノードにパケットを転送する。このことは、ルックアップ、及び解決が一度発生することになる。そして、より効率的でかつ練っておワークレイヤと独立なスイッチングが、パケットのフォワーディングに対応して発生し、スイッチされたドメインにおける各々のホップにおいてMACヘッダを交換するする必要がない。] [0042] 本発明の一実施例によれば、リンクステートプロトコル制御されたイーサーネット・ネットワークにおいてネットワークトポグラフィを交換するために使用されるルーティングプロトコル、例えばアイエスアイエスは、ネットワークノード間でネットワーク・レイヤー・アドレスを転送するために使用される。このことは、ルーティングされたドメインにおける各々の他のノードを介して、エンドシステムをアドレスしたどのネットワークレイヤに対してアクセスができるかを、全てのノードが知ることを可能とする。ネットワーク・レイヤー・アドレスは、ノードのリンクステートデータベースによって共有されてもよく、かつ、マルチキャスト・トポロジを特定して、更にL2、及びL3ネットワークトポロジの間の関連を特定するために使用されてもよい。] [0043] パケットがVFEに到着すると、ローカルのスイッチされたドメインの外側からの、あるいは、VFEを特定しているB−MACを持つドメイン内からのいずれからでも、そのVFEは、そのパケットのための適切なフォワーディングアクションを決定するためにネットワークレイヤルートルックアップを実行する。このことは、以下のいずれか1つであってもよい。すなわち、 1)最短のパスが、ローカルのスイッチされたドメインの出口に直ちにあるとき、直接接続されたネットワーク・レイヤーフォーワーダーにパケットをフォワードする。 2)UNI I−SIDにパケットをフォワードする。このことは、パケットを、VFEから仮想ブリッジにパケットオフ(packet off)のハンドリングをすることを必要とする。仮想ブリッジは、ネットワークレイヤのための適切なC−MACを決定し、そして、これを適切なB−MACに解決する。これによって、スイッチされたドメインから出口に到達する。 3)スイッチされたドメインのピアVFEにパケットをフォワードする。このことは、ピアVFEノードのMACを解決し、適切にパケットのフォワードを行う。 4)UNIポートにパケットをフォワードする。 例えば、IPv4またはIPv6生存時間(TTL:time to live)カウンタをデクリメントすることによって、パケットの通常のネットワークレイヤ処理は、VFEフォワード方法の一部として実行される。] [0044] スイッチされたドメインにおいてフォワードされるパケットに対して、VFEは、スイッチされたドメインにおいてそのパケットを出口ノードにフォワードするために、図4に示すようにパケットのためのMACヘッダを作成する。具体的には、エッジノードは、リンクステートプロトコル制御されたイーサーネット・ネットワークにおいて、ネットワークのデスティネーション・ノードにパケットをスイッチするために使用され得るMACヘッダを決定する。そして、パケットは、デスティネーション・ノードにフォワードされるパケットが発生するようスイッチされたドメインにおいて出力されてもよい。リンクステートプロトコル制御されたイーサーネット・ネットワークは、MACデスティネーションアドレス及びVLAN ID(DA/VID)に基づいて、データのフレームをフォワードするよう設計されているため、既にフォワーディング情報ベースに格納された情報を用いて、ネットワークのノードは、外側(outer)のMACヘッダを各中間ノードで変更することなく、リンクステートプロトコル制御されたイーサーネット・ネットワークにおいてエッジノードEに、ネットワークレイヤパケットをフォワードする。] 図4 [0045] したがって、イーサネットスイッチは、ネットワークレイヤフォワードをインプリメントするために使用されてもよい。これによって、パケットはスイッチされたドメインのVFEに到着するため、単一のネットワークレイヤルックアップがパケットに実行されてもよい。ネットワークアドレスは、スイッチされたドメインにおいてパケットを転送するために使用されるMACヘッダにマップされてもよい。この場合において、スイッチされたドメインをパケットが通過する場合に更なるネットワークレイヤルックアップを必要としない。したがって、ネットワークレイヤルックアップを必要とせず、サブネットワークというよりは、むしろリンクの細分性においてイーサネットのスイッチされたドメインをインプリメントする、MPLSの利点を得ることが可能となる。しかしながら、リンクステートプロトコル制御されたイーサーネット・ネットワークのレイヤトラフィックはMPLSよりも更なる利点を有する。すなわち、これは、中間のノードにおいてMACヘッダを取り除くことを必要とせず、また、スイッチングの挙動をシミュレートするためのラベルの付加も必要としない。むしろ、パケットがネットワークのノードを横断するように、同じMACヘッダが複数ネットワークノードによるパケットをスイッチするために使用されてもよい。] [0046] 図5ないし図8は、本発明の一実施例に従って、ネットワークが、ネットワークレイヤフレームをフォワードすることを可能にするために図4のスイッチされたドメイン上のノードによってインプリメントされた方法の部分を示す。図5に示すように、エッジノードがネットワークレイヤアドレス(50)を認識したとき、それをそのリンク・ステートアドバタイズメントネットワークレイヤアドレスに付け加える。LSAは、タイプレングスバリュー(TLV)を有してもよい。これは、ネットワーク・レイヤー・アドレス(例えばIPv4またはIPv6アドレス)を含むよう、それを示している。LSAは、エッジノードがネットワーク・レイヤー・アドレスの知識をアドバタイズすることを可能にするために、ネットワーク(52)上に送信される。アイエスアイエス(IS−IS)LSAは、ネットワーク・レイヤー・アドレスを伝送するように構成される点に留意する必要がある。この固有(native)の容量は本発明の実施例に対応して使用されてもよい。そして、ネットワークレイヤフォワーディングが実行されるよう、スイッチされたドメイン上のノードのFIBの予めインストールされた最短パスフォワーディング・ステートを使用して、このネットワーク・レイヤー・アドレスが新規な方法で使用される。] 図4 図5 図8 [0047] マルチキャストの場合において、エッジノードは、マルチキャスト・ネットワークレイヤアドレスと、ネットワークレイヤマルチキャストに関連づけられたI−SIDとの間のバインディングを形成し、または、フォワーディングに使用するためのイーサネット・グループアドレスを得るための固有の手段を使用する。ネットワークレイヤマルチキャストのメンバシップは、例えば、インターネットグループマネージメントプロトコル(IGMP)または、他のグループ管理プロトコルを使用して、興味を持ったノードによってアドバタイズされてもよい。ノードが、接続されたルータからIGMPメッセージを受信するとき、1つの有用な技術は、IGMPメッセージを、IPマルチキャストに関連づけられたI−SIDに解決し、かつ、ネットワークレイヤマルチキャストアドレスを含むリンク・ステート・アドバタイズメントを生成することである。ネットワークレイヤマルチキャストアドレスは、リンクステートプロトコル制御されたイーサーネット・ネットワークにおいて転送される。そして、ノードは、マルチキャスト・グループに加えられ、接続性は、通常のオペレーションの一部として構築される。] [0048] 図6に示すように、ルーティングされたドメインのノードがLSA(60)を受信した場合、それは、ネットワーク・レイヤー・アドレスを、LSAを発行したノードのIDに関連づけるために、リンクステートデータベースをアップデートする。スイッチされたドメインの中のノードは、また、ネットワーク・レイヤー・アドレスに関連づけられた、節点のMACアドレスによって、それらのリンクステートデータベースを更新する(62)。ネットワーク・レイヤー・アドレスがネットワークレイヤマルチキャストアドレスである場合(64)、ノードはまた、それが同じネットワークレイヤマルチキャストに対する関心をアドバタイズした二つのノード間の最短パスにあるかどうかを判断する(66)。そうである場合は、ノードは、ネットワークレイヤマルチキャストアドレスに関連づけられたDA/VIDのためのFIBに、フォワーディング・ステートをインストールする。ネットワークレイヤマルチキャスト・メンバシップは、プロトコル(例えばIGMP)を使用して、共通にインプリメントされる。エッジノードが接続されたネットワークからIGMPメッセージを受信すると、リンクステートプロトコル制御されたイーサーネット・ネットワークのノードは、図5に示し上述したように、リンクステートプロトコル制御されたイーサーネット・ネットワークにおいて、ネットワークマルチキャストメンバーシップにこの変更をアドバタイズするために、LSAを生成してもよい。また、IGMPメッセージは、もちろん、通常の方法で送信されてもよい。ネットワーク・レイヤー・アドレスを含むLSAは、リンクステートプロトコル制御されたイーサーネット・ネットワークのノードが、最短パスに沿ってネットワークレイヤマルチキャストをインプリメントするために、ノードにおいてマルチキャストフォワーディング・ステートを確立することを可能とする。] 図5 図6 [0049] 図7に示すように、VFEがネットワークレイヤパケットを受信すると(70)、それは、パケットがユニキャスト・ネットワークレイヤパケットであるかどうか判断し、そして、そうである場合は、パケットのための正しいフォワードアクションを決定するために、ネットワークレイヤルックアップを実行する(72)。パケットがスイッチされたドメインの中でフォワードされることになっている場合、ルックアップされるMACアドレスは次のホップ・ネットワークレイヤアドレスに結びついたMACアドレスである(52)。パケットがマルチキャスト・ネットワークレイヤパケットである場合、入り口エッジノードは、ネットワークレイヤグループアドレスに関連するイーサネット・グループアドレスを判断するために、ネットワークレイヤルックアップを実行し、かつそのマルチキャスト・グループ(74)のために使用されるマルチキャストDA/VIDを有するMACヘッダを作成するためにこの情報を使用する。このことは、ネットワークレイヤマルチキャストが、リンクステートプロトコル制御されたイーサーネット・ネットワークにおいて、マルチキャストツリー上でフォワードされることを可能とする。マルチキャストツリーは、関連するネットワークレイヤマルチキャストグループのソースによって利用されるために生成される。ネットワークレイヤマルチキャストグループは、ローカルのスイッチされたドメインの入り口を通過する。] 図7 [0050] 図8を参照する。フレームが出口ノードで受信された場合(80)、出口ノードはMACヘッダを取り除く。なぜなら、それ自体が、自身をデスティネーションとみなし(82)、かつ、パケットに関連づけられたネットワーク・レイヤー・アドレスを読み込む。そして、出口ノードは、ネットワーク・レイヤー・アドレスに基づき、目的とするデスティネーションに、パケットをフォワードする(84)。出口ノードが、仮想フォワーディングエンティティ(VFE:Virtual Forwarding Entities)を介して、どのようにパケットをフォワードするかに関する追加の情報は、図10、及び図11を参照しながら後述する。] 図10 図11 図8 [0051] 図9は、リンクステートプロトコル制御されたイーサーネット・ネットワークで利用される構成のネットワーク要素12の可能なインプリメンテーションを示した図である。ネットワークエレメント12は、ルーティング・システムモジュール80を含む。ルーティング・システムモジュール80は、制御メッセージを交換するよう構成されており、制御メッセージは、ネットワーク10のピア12のルーティング及びリンクステートプロトコルを使用したネットワークトポロジに関するそのたの情報を含む。ルーティングシステム80によって受信される情報は、リンクステートデータベース90によって、または他の方法によって記憶されてもよい。上述したように、情報の交換は、ネットワークのノードが、ネットワークトポロジの同期化されたビューを生成し、これによって、ルーティング・システムモジュール80が、ネットワークの他のノードへの最短パスを算出することを可能とする。ルーティングシステム80によって算出された最短パスは、FIB82にプログラムされ、これは、適切なエントリと共に格納される。計算された最短パス、マルチキャストツリー、トラフィック計算されたエントリ、およびその他のエントリに基づいて、ネットワークのトラフィックを命じることができる。] 図9 [0052] 本発明の一実施例によれば、ルーティングシステム80は、ネットワークレイヤ到達可能性情報を含むルートアップデートを交換してもよい。ネットワークレイヤパケットが到着したとき、ネットワークのノードによって知られているネットワーク・レイヤー・アドレスは、リンクステートプロトコル制御されたイーサーネット・ネットワークの入り口ノードが正しい出口ノードを選ぶことができるように、ネットワークエレメント12のリンクステートデータベース90に記憶される。ネットワーク・レイヤー・アドレスの知識は、ノードが、同じIPマルチキャストに興味があるノードのペア間のフォワーディング・ステートをインストールすることによって、ネットワークレイヤマルチキャストがネットワークのノードによって処理されることを可能とするために、マルチキャストフォワーディング・ステートをネットワークにインプリメントすること可能としてもよい。] [0053] ネットワークエレメント12は、一つ以上の他のモジュール、例えば、逆パスフォワードチェック(RPFCモジュール84)を含んでもよい。RPFCモジュール84は、受信フレームの処理に使用されてもよく、FIB82のルックアップを実行してもよい。ルックアップによって、フレームが受信されたポートが、特定のソースMACのためのFIB 82において特定されるポートと一致するかを特定する。入力ポートがFIBにおいて特定された正しいポートと一致しない場合、RPFCモジュールによってドロップされるメッセージが生じてもよい。] [0054] フレームがRPFC84モジュールを伝搬した場合、デスティネーション・ルックアップ86モジュールは、FIB82から、フレームがフォワードされなければならないポートを特定する。FIBがDA/VIDのエントリを有しない場合、フレームは破棄される。] [0055] 当業者によって理解されるように、記載されているモジュールは実例をしめす目的だけのために存在する。そして、機能を組み合わせるか、またはノードのモジュールの中に機能を分配することによってインプリメントされてもよいことも、また、理解されなければならない。] [0056] 図10は、いくつかの可能なエレメントの組合せを示す図である。図10に示すように、スイッチ100及びルータ102は、仮想フォワーディングエンティティVFE104に接続されてもよい。トランジットI−SID106は、アドレスを有しないLANセグメントであって、かつ複数のVFEを相互接続するために使用される。特に、VFEのセットは、I−SIDと関連づけられた相互の接続性のインスタンスの参加する機器にサービスを行う。トランジットI−SIDは、任意の数のVFEを相互接続してもよい。そして、単一の典型的なトランジットI−SIDのみが図10に示されている。] 図10 [0057] 図10に示すように、スイッチ100またはルータ102は、VFEに、UNIポートを介して接続されてもよい。VFEは、そして、アドレスされないトランジットI−SIDの他のVFEに接続されてもよい。あるいは、スイッチは、アドレスされた仮想リンクのVFEに接続されてもよい。これは、本明細書において、UNI I−SIDと呼ぶ。UNI I−SIDは、VFEと接続されてもよい。VFEは、ランジットI−SIDを介して相互接続されるか、あるいは、相互に接続されていなくてもよい。] 図10 [0058] スイッチングネットワークのアドレスされないリンクを介してVFEを相互接続するためにトランジットI−SIDをインプリメントすることも可能である。したがって、多くの可能性が存在し、かつVFEは、ネットワークでパケットをフォワードするさまざまな方法によって使用されてもよい。] [0059] トランジットI−SIDの1つの特徴は、L2/L3統合のための状態の全体の量がネットワークのVFEのセットで分けられてもよいということである。VFEに関連する状態の量は、VFEを介して直結しているUNI I−SIDのセットと関連するL2及びL3のステートの合計である。このことは、典型的には、エンドシステムネットワークレイヤアドレッシング、及びネットワークレイヤのイーサネットMACバインディングである。トランジットI−SIDsの使用によってVFE間の状態を分けることによって、VFEはネットワークレイヤ情報の知識だけを有するだけでよい。ネットワークレイヤ情報としては、UNI I−SID、及び共通トランジットI−SIDとの関連を持つポートがある。] [0060] 同様に、L2/L3ハイブリッドネットワークへのアクセスは、仮想LANセグメントを介して行うことを必要としない。物理LANセグメント、または物理ポイント・ツー・ポイント接続は、ハイブリッドネットワークへの有効な接続である。物理LANセグメントは、Null I−SIDをもつUNIと同じように特定される。なお、ポイント・ツー・ポイント接続のケースは、UNIポートと称される。] [0061] 図11は、本発明の一実施例に従った、L2/L3ハイブリッドネットワークのコンポーネントの機能分解を示す。図11に示すように、L2/L3ハイブリッドネットワークは、ルーティングドメイン130、及びスイッチングドメイン150を含む。ネットワークレイヤ130は、エンドシステム170、及びスイッチングドメインの仮想フォワードエンティティ152の間で相互接続するネットワーク・レイヤーフォーワーダー132を含む。] 図11 [0062] スイッチングドメインの中で、仮想フォワードエンティティ152が物理UNIポート154に接続され、アドレスされた仮想LANセグメントは、他のVFE(UNI I−SID)156に接続され、アドレスされない仮想LANセグメントは、他のVFE(トランジットI−SID)158に接続される。UNIポート154は、VFE152がパケットをネットワーク・レイヤーフォーワーダーにフォワードすることを可能とするために、ネットワーク・レイヤーフォーワーダー132に接続される。アドレスされた仮想LANセグメント(UNI I−SIDs)156は、仮想ブリッジ160及び物理LAN162関連づけられ、パケットが、スイッチングドメインの中でスイッチされ、ネットワーク・レイヤーフォーワーダー132、あるいは、エンドシステム170に送られる。トランジットI−SIDは、パケットがVFE、及び仮想ブリッジ164の間でフォワードされることを可能とする。] [0063] ルーティングドメインのノードは、ネットワーク・レイヤー・アドレスまたはプレフィクスが、ルーティングドメインの外側で、それ自体を介して到達したと判断する場合、それは、そのリンク・ステート・アドバタイズメントにネットワークレイヤ情報を含ませる。このことは、この知識により、または発見メカニズムにより構成がなされた結果であってもよい。ネットワークレイヤ情報は、UNI I−SID、UNIポート(スイッチされたドメインに直接接続するエンドシステムの有効な手段)、またはネットワーク・レイヤーフォーワーダー(これは、スイッチされたドメインに直接接続(connected)されていないエンドシステムを接続(attach)するために使用される)に関連づけられる。] [0064] ルーティングドメインに含まれるスイッチングドメインの各々のノードは、このネットワークレイヤプレフィクスをそのリンクステートデータベースに付け加える。パケットがVFEに到着したときに、VFEがネットワーク・レイヤー・アドレスを読み込み、かつルーティングドメインのネットワークレイヤデスティネーションに最短パスのパケットをフォワードすることを続ける適切なフォワードアクションを決定するべく、スイッチングドメインの中でVFEをインプリメントするノードが、正しくそれらのFIBに格納するためにこの情報を使用する。] [0065] ネットワークレイヤルーティングを、リンクステートプロトコル制御されたイーサーネット・ネットワークのフォワーディングと結ぶ(tying)ことによって、IPサービスは、リンクステートプロトコル制御されたイーサーネット・ネットワークを通じて転送される。この場合、IPルートのために必要とされるユニキャスト又はマルチキャストのパスをセットアップするための追加的な信号を必要としない。このことは、リンクステートプロトコル制御されたイーサーネット・ネットワークがネットワークレイヤルートに生成されるためのショートカットを与える。これによって、L3フォワードディングが、リンクステートプロトコル制御されたイーサーネットネットワークドメインにおけるL2スイッチングに縮合される。] [0066] スイッチされたドメイン、及びスイッチされたドメインの外側の共通インターフェースにおいて、同時に複数ネットワークレイヤプロトコルをサポートすることが可能である。複数ネットワークレイヤプロトコル(例えばIPv4、及びIPv6)に関する情報は、リンク・ステートルーティングプロトコルを介して転送されてもよく、そして、VFEは複数ネットワークレイヤをFIBに組み込んでもよい。これによって、ルーティングドメインでサポートされるネットワークレイヤで受信されるいかなるパケットも正しく解決される。] [0067] 上述の機能は、計算機可読のメモリにおいて記憶され、かつコンピュータプラットフォーム上の一つ以上のプロセッサにより実行されるプログラム命令のセットとしてインプリメントされてもよい。しかしながら、本願明細書において記載されている全てのロジックが個別部品、アプリケーションに特有の集積回路(ASIC)のような集積回路、フィールドプログラマブルゲートアレイ(FPGA)またはマイクロプロセッサのようなプログラマブル・ロジック・デバイスと連動して使用されるプログラマブルロジック、ステートマシンまたはそれのいかなる組合せを含んだその他のいかなるデバイスを使用して実施されてもよいことは、当業者とって明らかである。プログラマブルロジックは、リード・オンリ・メモリ・チップ,コンピュータ・メモリ,ディスクまたは他の格納媒体など、有形の媒体(実体のあるメディア)によって一時的あるいは永久に固定できる。全てのこの種の実施例は、本発明の範囲内にあると意図される。] 実施例 [0068] 図面において示され、かつ明細書に記載されている実施例のさまざまな変更及び改造が本発明の範囲内でなされてもよいことは、理解されなければならない。したがって、添付の図面において示し前記説明に含まれている全ての事項は実例であり、限定的に解釈してはならない。本発明は、以下の請求項、及びその均等物に定義したように限定される。]
权利要求:
請求項1 ハイブリッドスイッチングレイヤー(L2)/ネットワークレイヤ(L3)ネットワークであって:複数のネットワーク・レイヤーフォーワーダー、及び一つ以上のスイッチングドメインを含むルーティングドメインと、ネットワーク・レイヤーフォーワーダー、及び仮想・フォワーディング・エンティティ(VFE)を使用しているエンドシステム、を相互接続している前記スイッチングドメインと;複数の仮想LANセグメントをインプリメントしている前記スイッチングドメインであって、前記LANセグメントは、アドレスがあるか、またはアドレスがないかであり、前記アドレスされた仮想LANセグメントは、前記VFEとネットワーク・レイヤーフォーワーダーと又はエンドシステムとを相互接続するために使用され、かつ前記アドレスされない仮想LANセグメントは、前記スイッチされたドメインの中でVFEを相互接続するために使用されるところの前記スイッチングドメインと;を有し、前記スイッチングドメインにおける前記VFEは、前記スイッチングドメインによってインプリメントされた前記複数の仮想LANセグメントの任意のサブセットを相互接続する、ハイブリッドスイッチングレイヤー(L2)/ネットワークレイヤ(L3)ネットワーク。 請求項2 前記アドレスされない仮想LANセグメントは、前記相互接続されたネットワーク・レイヤーフォーワーダーを含む関心のあるコミュニティのためのVFEの非存在下において、ネットワーク・レイヤーフォーワーダーに他のネットワーク・レイヤーフォーワーダーを更に相互接続するために使用される、請求項1記載のハイブリッドL2/L3ネットワーク。 請求項3 前記アドレスされない仮想LANセグメントは、前記ネットワーク・レイヤーフォーワーダー、及びエンドシステムを含む関心のあるコミュニティのためのVFEの非存在下において、ネットワーク・レイヤーフォーワーダー及びエンドシステムを相互接続するために更に使用される、請求項1記載のハイブリッドL2/L3ネットワーク。 請求項4 前記ネットワークは、単一のアドレスされない仮想LANセグメントを含む、請求項1記載のハイブリッドL2/L3ネットワーク。 請求項5 前記ネットワークは、複数のアドレスされた仮想LANセグメントを含む、請求項1記載のハイブリッドL2/L3ネットワーク。 請求項6 前記アドレスされない仮想LANセグメントは、全ての前記VFEのサブセットを相互接続する、請求項1記載のハイブリッドL2/L3ネットワーク。 請求項7 前記アドレスされた仮想LANセグメントは、仮想ブリッジまたは物理LANセグメントを使用して実現される、請求項1記載のハイブリッドL2/L3ネットワーク。 請求項8 前記仮想ブリッジは、前記スイッチングドメインを前記ネットワーク・レイヤーフォーワーダーのうちの1つ、又は前記エンドシステムのうちの1つと相互接続する、請求項7記載のハイブリッドL2/L3ネットワーク。 請求項9 前記VFEは、前記スイッチングドメインと前記ルーティングドメインとの間のネットワークレイヤのフォワーディングを実行するために使用される、請求項8記載のハイブリッドL2/L3ネットワーク。 請求項10 前記スイッチングドメインは、複数のスイッチングノードを含み、そのうちの少なくとも一部が前記VFEをインプリメントし、かつ、前記スイッチングドメインでVFEをインプリメントするノードは、前記スイッチングドメインのスイッチングノードFIBに格納するために、前記ネットワークドメインのルートに関連づけられた情報を使用し、そのため、パケットがVFEに到着したとき、前記VFEは、前記ネットワーク・レイヤー・アドレスを読み込み、かつ、前記ルーティングドメインの前記ネットワークレイヤデスティネーションに、前記スイッチングドメインを通じてスイッチされたパス上に、前記パケットをフォワードするための適切なフォワーディングアクションを決定し得る、請求項9記載のハイブリッドL2/L3ネットワーク。 請求項11 前記スイッチングドメインは、前記スイッチングドメインの前記ノード上のフォワード情報ベースに、フォワードステートを格納することを制御するためのリンク・ステートルーティングプロトコルを走らせる複数のノードを含み、前記リンク・ステート・ルーティング・プロトコルは、前記スイッチングドメインの前記ノード間で、ネットワーク・レイヤー・アドレスを転送するために使用される、請求項1記載のハイブリッドL2/L3ネットワーク。 請求項12 ノード間のネットワーク・レイヤー・アドレスを転送することは、ネットワークレイヤでアドレスされたどのエンドシステムが、前記ネットワークドメイン上の各々の前記他のノードを介して到達できるかについて、前記ノードが知ることを可能とする、請求項11記載のハイブリッドL2/L3ネットワーク。 請求項13 前記ノードは、前記ネットワークレイヤでアドレスされた前記エンドシステムに関連づけられたネットワーク・レイヤー・アドレスをリンクステートデータベースに格納し、該リンクステートデータベースは、前記L2、及びL3ネットワークトポロジの間の関連を決定するために使用され得る、請求項12記載のハイブリッドL2/L3ネットワーク。 請求項14 前記スイッチングドメインは、イーサネットドメインである、請求項11記載のハイブリッドL2/L3ネットワーク。 請求項15 リンクステートプロトコル制御されたイーサーネット・ネットワーク上で作動するノードのフォワーディング・ステートをインストールする方法であって:前記リンクステートプロトコル制御されたイーサーネット・ネットワーク内の第2のノードによって取得可能なネットワークレイヤプレフィクスを含むリンクステートアドバタイズメント(LSA)を、リンクステートプロトコル制御されたイーサーネット・ネットワーク内で作動する第1のノードによって受信するステップであって、前記第1および第2のノード間の前記パスは、前記リンクステートプロトコル制御されたイーサーネット・ネットワークの複数のリンクを含むところのステップと、前記ネットワーク・レイヤー・アドレスと前記リンクステートプロトコル制御されたイーサーネット・ネットワーク内の前記第2のノードのイーサネットMACノードIDとの間の関連を示すルーティングテーブルを更新するステップと;を有する方法。 請求項16 前記第1のノードが、前記ネットワーク・レイヤー・アドレスにアドレスされたパケットのためのMACヘッダを生成できるよう、前記第1のノード内のテーブルエントリのフォワーディングをアップデートするステップであって、前記MACヘッダは、前記リンクステートプロトコル制御されたイーサーネット・ネットワークの前記第2のノードのデスティネーションMACアドレスを含むところのステップ、を更に有する、請求項15記載の方法。 請求項17 前記ネットワーク・レイヤー・アドレスにアドレスされた前記パケットを受信するステップと、前記MACヘッダを作成するステップと、前記リンクステートプロトコル制御されたイーサーネット・ネットワーク上の前記パケットをフォワードするステップとを更に有する、請求項16記載の方法。 請求項18 前記ネットワークレイヤプレフィクスは、IPv4またはIPv6ネットワーク・レイヤー・アドレスである、請求項15記載の方法。 請求項19 前記ネットワークレイヤプレフィクスは、仮想化されたサブネットを参照する、請求項18記載の方法。 請求項20 前記仮想化されたサブネットは、前記前記リンクステートプロトコル制御されたイーサーネット・ネットワークのトポロジから切り離される、請求項19記載の方法。
类似技术:
公开号 | 公开日 | 专利标题 US10469370B2|2019-11-05|Segment routing techniques US10164838B2|2018-12-25|Seamless segment routing US9912495B2|2018-03-06|Virtual layer 2 and mechanism to make it scalable US10230577B2|2019-03-12|Packet broadcast mechanism in a split architecture network US10454821B2|2019-10-22|Creating and maintaining segment routed traffic engineering policies via border gateway protocol US10367730B2|2019-07-30|Layer two over multiple sites US9979629B2|2018-05-22|Distribution of segment identifiers in network functions virtualization and software defined network environments US10003531B2|2018-06-19|Method for establishing tunnel, method for allocating label, device and network system US9485141B1|2016-11-01|Constrained route distribution for multiple virtual private network services JP6250825B2|2017-12-20|データネットワークに最大冗長木(maximallyredundanttree)をデプロイする方法およびシステム CN105049350B|2018-06-12|利用出口对等工程的分段路由的方法、装置及系统 US9634929B2|2017-04-25|Using context labels to scale MAC tables on computer network edge devices US9319312B2|2016-04-19|Segment routing mapping server for LDP/SR interoperability US9042271B2|2015-05-26|Transport networks supporting virtual private networks, and configuring such networks CN107637031B|2020-07-14|用于网络业务的路径计算单元中央控制器 US9306855B2|2016-04-05|System and method for using label distribution protocol | in IPv6 networks US9699066B2|2017-07-04|System and method for enabling conversational learning in a network environment EP3264690A1|2018-01-03|Bridge for connecting layer 2 and layer 3 virtual networks US9912614B2|2018-03-06|Interconnection of switches based on hierarchical overlay tunneling US9001647B2|2015-04-07|Distributed failure recovery in a routed ethernet network EP2742655B1|2015-05-06|Implementing ospf in split architecture networks US8645576B2|2014-02-04|Overlay transport virtualization US9197583B2|2015-11-24|Signaling of attachment circuit status and automatic discovery of inter-chassis communication peers US20180123874A1|2018-05-03|Ip mpls pop virtualization and fault tolerant virtual router EP3103230B1|2019-07-24|Software defined networking | specific topology information discovery
同族专利:
公开号 | 公开日 EP2227880A1|2010-09-15| KR20100106562A|2010-10-01| JP5291122B2|2013-09-18| BRPI0821664A2|2016-05-03| JP2013138507A|2013-07-11| CN102037685B|2014-08-27| CN104079481A|2014-10-01| US9432213B2|2016-08-30| US20090279536A1|2009-11-12| WO2009088856A1|2009-07-16| KR20140119775A|2014-10-10| JP5550757B2|2014-07-16| EP2227880A4|2011-08-31| EP2466807A1|2012-06-20| CN102037685A|2011-04-27|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
法律状态:
2011-09-06| A621| Written request for application examination|Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110905 | 2012-11-30| A977| Report on retrieval|Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121130 | 2012-12-12| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121211 | 2013-03-12| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130311 | 2013-05-08| A01| Written decision to grant a patent or to grant a registration (utility model)|Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130507 | 2013-06-13| A61| First payment of annual fees (during grant procedure)|Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130606 | 2016-06-14| LAPS| Cancellation because of no payment of annual fees|
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|